
Comment on “Adaptive-feedback control algorithm”

Wenlian Lu*
Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22, Leipzig, 04103, Germany

�Received 24 July 2006; published 16 January 2007�

We point out a problem in the parametric estimation method based on the adaptive-feedback algorithm
proposed by D. Huang �Phys. Rev. E 73, 066204 �2006�� both illustratively and analytically. Furthermore,
under some hypotheses, we prove that it is not the so-called chaotic dynamical characteristic but the linear
independence between the right-hand functions and the estimated parameters of the intrinsic system in its
attractor that counts in the availability of this algorithm in estimating the unknown parameters.
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In a recent paper �1�, the author presented the detailed
mathematical proof and remarks on his previous works
�2–5�, where an adaptive-feedback algorithm was proposed
to stabilize and synchronize chaotic system. This adaptive-
feedback algorithm can be briefly described as follows.
Consider an n-dimensional system in the form of

ẋ = F�x,p� , �1�

where x= �x1 , . . . ,xn�T�Rn and F�x , p�= �F1�x , p� ,
. . . ,Fn�x , p��T�Rn is a nonlinear vector function with
Fi�x , p�=ci�x�+� j=1

m pijf ij�x�, i=1, . . . ,n. Here, ci�x�, f ij�x�, i
=1, . . . ,n , j=1, . . . ,m, are nonlinear functions and p= �pij , i
=1, . . . ,n , j=1, . . . ,m��Rnm are nm unknown parameters to
be estimated. Also, uniform Lipschitz conditions are as-
sumed to be satisfied, i.e., �Fi�x , p�−Fi�y , p� � � l maxj�xj

−yj� holds for some l�0, all x ,y�Rn, and i=1, . . . ,n. To
estimate the unknown parameters p, the following receiver
system was also introduced:

ẏ = F�y,q� − K�y − x� , �2�

where K=diag�k1 ,k2 , . . . ,kn�, with the adaptive feedbacks:

q̇ij = − �ijeif ij�y� ,

k̇i = �i�xi − yi�2, �3�

where �ij �0, �i�0 are some constants and ei=yi−xi. In
particular, theorem 4 in �1� indicated that the adaptive-
feedback algorithm, Eqs. �1�–�3� can efficiently estimate the
unknown parameter in the intrinsic system �1�.

However, theorem 4 of �1� is problematic and its proof is
not rigorous in mathematics. First, we present a counterex-
ample for which this algorithm fails. Consider the following
six-dimensional system:

ẋ1 = a�x2 − x1 − h�x1�� ,

ẋ2 = x1 − x2 + x3,

ẋ3 = − bx2,

ẋ4 = a�x5 − x4 − h�x4�� + p1�x1 − x4� ,

ẋ5 = x4 − x5 + x6 + p2�x2 − x5� ,

ẋ6 = − bx5 + p3�x3 − x6� , �4�

where a=9.78, b=14.97, h�x1�=m1x1+0.5�m0−m1���x1+1�
− �x1−1�� with m1=−0.75 and m0=−1.31, and p1,2,3 are un-
known parameters. This system can actually be regarded as
coupled Chua’s circuits, which was studied in �6�. The sub-
system �x1 ,x2 ,x3� is a Chua’s circuit and the subsystem
�x3 ,x4 ,x5� is the another Chua’s circuit coupled with the sub-
system �x1 ,x2 ,x3� by linear feedback. As shown in �6�,
�x1 ,x2 ,x3� has a double-scrolling chaotic attractor.

The task is to estimate the unknown parameters p1,2,3 by
applying the adaptive-feedback algorithm proposed in �1�,
namely, Eqs. �1�–�3�. To do so, we introduce the following
receiver system:

ẏ1 = a�y2 − y1 − h�y1�� + k1�x1 − y1� ,

ẏ2 = y1 − y2 + y3 + k2�x2 − y2� ,

ẏ3 = − by2 + k3�x3 − y3� ,

ẏ4 = a�y5 − y4 − h�y4�� + q1�y1 − y4� + k4�x4 − y4� ,

ẏ5 = y4 − y5 + y6 + q2�y2 − y5� + k5�x5 − y5� ,

ẏ6 = − by5 + q3�y3 − y6� + k6�x6 − y6� , �5�

with the following feedback:

q̇j = �yj − yj+3��xj+3 − yj+3�, j = 1,2,3,

k̇i = �xi − yi�2, i = 1, . . . ,6. �6�

Pick p1= p2= p3=10. Let var1= 	�1/3���x1−x4�+ �x2−x5�+ �x3

−x6��
 denote the variance between two subsystems in the
intrinsic system �4� and var2= 	�1/6��i=1

6 �xi−yi�
 denote the
variance between the intrinsic system �4� and the receiver
system �5�, where 	·
 denotes the time average. Figure 1
shows that the variances var1,2 both converge to zero through
time. However, even though the parameters q1,2,3 converge,
the terminal convergent values are not the estimated param-
eters p1,2,3 and depend on the initial data. Therefore, from
this synthetic example, the adaptive-feedback algorithm fails*Electronic address: wenlian@mis.mpg.de
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to estimate the unknown parameter of the intrinsic system
even though it does synchronize the receiver system to the
intrinsic system.

The problem of the conclusion of theorem 4 of �1� lies on
the misusage of the Lasalle invariance principle �7� in its
proof of theorem 4. In this proof, the author constructed a
scalar function:

V�x,y,q,k� =
1

2�
i=1

n

ei
2 +

1

2�
i=1

n

�
j=1

m
1

�ij
�qij − pij�2

+
1

2�
i=1

n
1

�i
�ki − L�2,

where L�nl. Differentiating it along the systems �1�–�3�
gives

V̇�x,y,q,k� � �nl − L��
i=1

n

ei
2. �7�

According to the Lasalle invariance principle, this implies
that the flow �x ,y ,q ,k� will converge to the largest invariant

set contained in the set E= ��x ,y ,q ,k� : V̇=0�= ��x ,y ,q ,k� :x
=y�. Then the author claimed that the set M = ��x ,y ,q ,k� :x
=y ,q= p ,k=k0� is the largest invariant set in E. But, this
claim is incorrect. Consider the example we proposed above.
Picking p1= p2= p3=10 guarantees that the subsystem
�x1 ,x2 ,x3� is synchronized to the subsystem �x4 ,x5 ,x6�,
namely, the synchronization manifold

S = ��x1, . . . ,x6�:x1 = x4,x2 = x5,x3 = x6�

is an asymptotically stable invariant manifold for the system
�4�. This implies that the following set M�= ��x ,y ,q ,k� ,x
=y ,q�R3 ,k�R6� is also an invariant set contained in E
through the evolution �4�–�6�, where x= �x1 , . . . ,x6�T,
y= �y1 , . . . ,y6�T, q= �q1 ,q2 ,q3�T, and k= �k1 , . . . ,k6�T.

Obviously, we can see that M� nontrivially contains M,
which implies that, in this example, M is not the largest
invariant set contained in E. Therefore, the proof of theorem
4 in �1� is incorrect and its conclusion that the parameters in
the receiver system can converge to the unknown parameter
of the intrinsic system is problematic. Also, remark 5 in �1�
as well as the proof claimed that this availability of estimat-
ing parameters relied on the “chaotic characteristic of sys-
tem.” However, in our example, the intrinsic system �4� has
chaotic dynamics but its parameters fail to be estimated.

In fact, it is the characteristic of the attractor of the intrin-
sic system related to the unknown parameters that counts in
the estimation of parameters. Hereby, we will present the
necessary and sufficient condition for succeeding in estimat-
ing the parameters. Before that, we introduce the concept of
attractor for a dynamical system in the Milnor sense. For
more details, we refer the interested readers to �8�. Here, for
the system �1�, for each x0�Rn, ��x0� denotes the �-limit set
of the orbit x�t� with x�0�=x0. Let ��A� denote the set con-
sisting of all points x�Rn for which ��x�=A. If A is mini-
mal, then we can conclude that ��A� precisely equals to B�A�
up to a set with zero measure �8� and also has positive
measure. Then, we can easily have the following conclusion.

Proposition 1. Suppose that all conditions in theorem 4
�1� are satisfied. Let A be a minimal attractor of the intrinsic
system �1� and suppose that the parameter orbits q�t� and
k�t� converge �9–11�. If for any initial data x0���A� and
�y0 ,q0 ,k0��Rmn+2n, the receiver system and adaptive-
feedback system can precisely estimate the unknown param-
eter p, namely, limt→�q�t�= p, if and only if �i,jpij f ij�x�=0
holding in the attractor A implies pij =0 for all i=1, . . . ,n,
j=1, . . . ,m.

In the case that the attractor A is not minimal, A can
be decomposed into at most countable disjoint minimal at-
tractors �Aj� j=1

l , where l can be �. Then, the availability of
the estimation of the parameters can be guaranteed if the
functions � f̃ i j�x�� are linearly independent in each minimal
attractor Aj, j=1, . . . , l.

FIG. 1. �a� The variation of q1

�solid line�, q2 �dotted line�, and
q3 �dashed line� for overlapping
five times with different randomly
selected initial data; �b� the con-
vergence of var1 with respect to
time; �c� the convergence of var2

with respect to time.
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Coming back to the example presented above, with
p1= p2= p3=10, one can see that the synchronization mani-
fold S is asymptotically stable, which implies any attractor of
the system �4� is contained in S. The vector functions corre-
sponding to the functions �xi−xi+3�i=1

3 is obviously linear de-
pendent in S since xi−xi+3=0 holds for all x�S and
i=1,2 ,3. By proposition 1, we can see that in the case the
parameters p1,2,3 cannot be estimated by q1,2,3, respectively.
This is also shown in Fig. 1.

However, picking p1= p2= p3=0.2, which cannot synchro-
nize the subsystem �x4 ,x5 ,x6� to the subsystem �x1 ,x2 ,x3�,
applying the receiver and adaptive-feedback systems �5� and
�6�, Fig. 2 shows that the orbits q1,2,3�t� all converge to
0.2 but var1 does not converge to zero, which implies that

the subsystem �x4 ,x5 ,x6� is not synchronized to the sub-
system �x1 ,x2 ,x3�. Moreover, var2 converges to zero which
implies the receiver system �5� is synchronized to the
intrinsic system �4� via this adaptive-feedback algorithm
�6�.

In conclusion, the adaptive-feedback algorithm proposed
in �1� could not surely estimate the unknown parameters in
the intrinsic system. The availability of this algorithm can be
guaranteed by the linear independence of the functions,
which are linearly involved by these parameters, in the at-
tractor of the intrinsic system. Therefore, in a rigorous math-
ematical viewpoint, without sufficient knowledge of the at-
tractor of the intrinsic system, the availability of this
estimation algorithm cannot be guaranteed.
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n ei
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q�0� ,k�0�)	 +�, namely, �i=1

n ei
2�t��L2(�0, +��). From the

adaptive feedback �3�, this implies that the orbit k�t� is a
Cauchy series. In other words, the convergence of k�t� can be
concluded. However, the convergence of q�t� cannot be proved
to the best of my knowledge and reasoning. Furthermore, in
�9,10�, the author provided the so-called “persistently exciting”
condition as a sufficient condition for the convergence of
the parameter trajectory q�t�. One can see that this “persis-
tently exciting” condition actually implies the condition in
proposition 1.

FIG. 2. �a� The variation of q1

�solid line�, q2 �dotted line�, and
q3 �dashed line� with randomly se-
lected initial data; �b� the variance
of var1 with respect to time; �c�
the convergence of var2 with re-
spect to time.
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